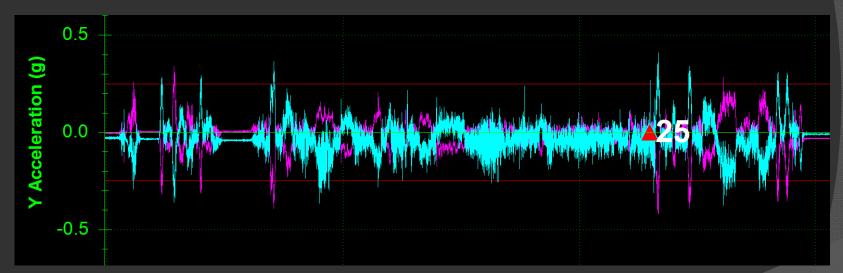
Portable Ride Quality Meters for Detecting Vehicle and Track Safety and Maintenance Issues

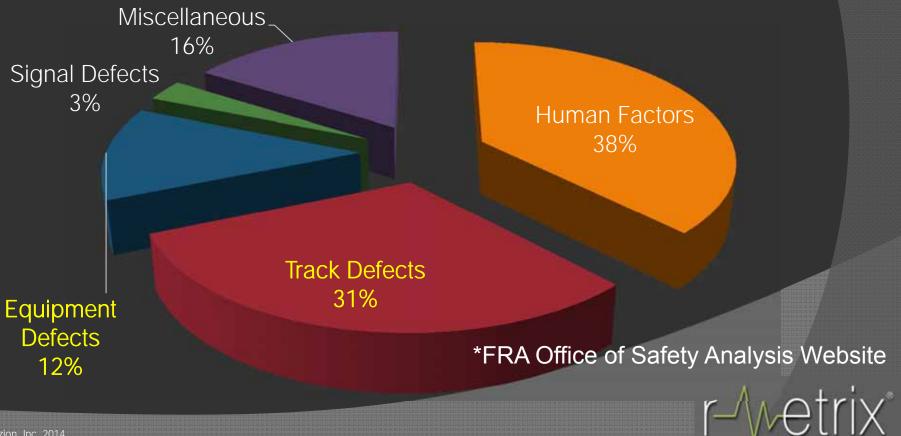
Presented By: Treasa Parakkat President, dFuzion, Inc.


Agenda

- Ride Quality
- Ride Quality Meters (RQMs)
- Detect Track Issues with RQMs
- Detect Vehicle Issues with RQMs
- rMetrix: Portable RQM
- Leveraging Portable RQM Technology
- Future of Portable RQMs

Ride Quality and Ride Comfort

Ride Quality: How a Vehicle's Vibration Correlates to the Vehicle/Track Interaction Forces to Detect Issues on the Track or of the Vehicle



Ride Comfort: How a Vehicle's Vibration Affects the Ride for its Passengers or Crew

Ride Quality Importance

Train Accidents Primary Causes (United States 2013)

Ride Quality Standards

- 49CFR213.333 (United States)
- UIC 518 (International Union of Railways)
- EN 14363 (Europe)
- Individual Rail Companies
 - Amtrak
 - Indian Railway
 - Queensland Rail
 - SNCF
 - Union Pacific
 - CSX

FRA 49CFR213.333 V/TI Safety Limits

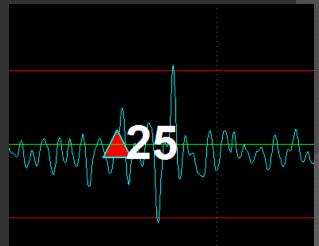
	Threshold	Passenger Cars	Power Cars
1	Carbody Vertical Transient	1.0g Peak-Peak	1.25g Peak-Peak
1	Carbody Vertical Sustained Oscillatory	0.25g RMS LTR	0.25g RMS LTR
	Carbody Lateral Transient	0.65g Peak-Peak	0.75g Peak-Peak
	Carbody Lateral Sustained Oscillatory	0.10g RMS LTR	0.12g RMS LTR
\longleftrightarrow	Truck Lateral Sustained Oscillatory	0.30g RMS LTR	0.30g RMS LTR

LP 10 Hz, 100 Hz Sample Rate (Minimum)

Maintenance Limits (Option)

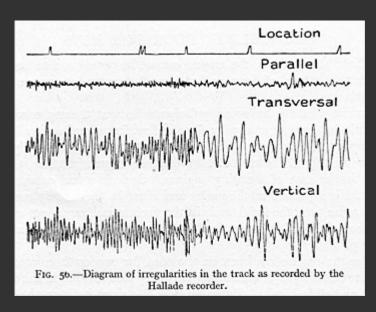
	Threshold	Passenger Cars	Power Cars
1	Carbody Vertical Transient	0.40g Peak-Peak	0.80g Peak-Peak
1	Carbody Vertical Sustained Oscillatory	0.22g RMS LTR	0.22g RMS LTR
	Carbody Lateral Transient	0.25g Peak-Peak	0.50g Peak-Peak
	Carbody Lateral Sustained Oscillatory	0.08g RMS LTR	0.08g RMS LTR
	Truck Lateral Sustained Oscillatory	0.27g RMS LTR	0.27g RMS LTR

LP 10 Hz, 100 Hz Sample Rate (Minimum)



Ride Quality Meter

Records Acceleration At:


- Carbody
- Truck
- Axle
- Compares Computed Acceleration Measurements Against:
 - Safety Thresholds
 - Maintenance Thresholds
- Reports
 - Excessive Acceleration Events
 - Correlated Location

Ride Quality Meter History

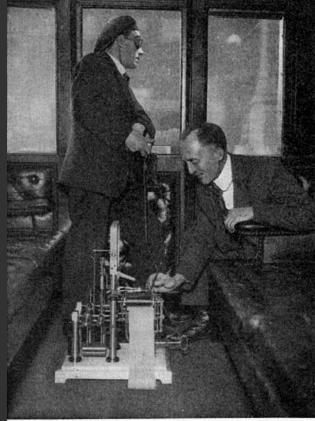


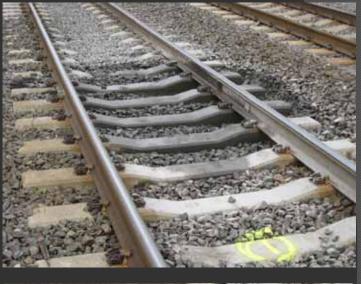
FIG. 55 .- Using the Hallade track recorder.

∧etrix®

http://www.youtube.com/watch?v=vybOobUK1FE Illustrations from "The Railway Book for Boys", 1930

Detect Track Issues with RQMs

- Lateral Track Geometry Issues
 - Alignment Deviations
 - Gage Deviations
- Vertical Track Geometry Issues
 - Profile Deviations
 - Cross Level Deviations



Real-World Example 1

Excessive Carbody Vertical Acceleration

- Profile Condition:
 - Mud Spot
 - Pumping Tie

Detect Track Issues with RQMs

Track Structure

- Mud Spots
- Fouled Ballast
- Pumping Joints
- Loose Ties
- Crushed Heads
- Low/Joints/Joint Batter

- Broken Heel Blocks
- Broken Switch Points
- Engine Burn
- Corrugation

Real-World Example 2

- Excessive Carbody Vertical Acceleration
- Findings:
 - Engine Burn
 - Pumping Tie

Detect Vehicle Issues with RQMs

- Primary and Secondary Suspension Components
 - Springs
 - Dampers
- Worn Wheels

Differentiating Track and Vehicle Issues

- Use Multiple Systems (Fleet Deployment)
- Track Root Cause
 - Multiple Vehicles Exhibit Same Exception at Same Location
- Vehicle Root Cause
 - One Vehicle Exhibits Acceleration Responses Inconsistent with Other Vehicles

Portable RQM History

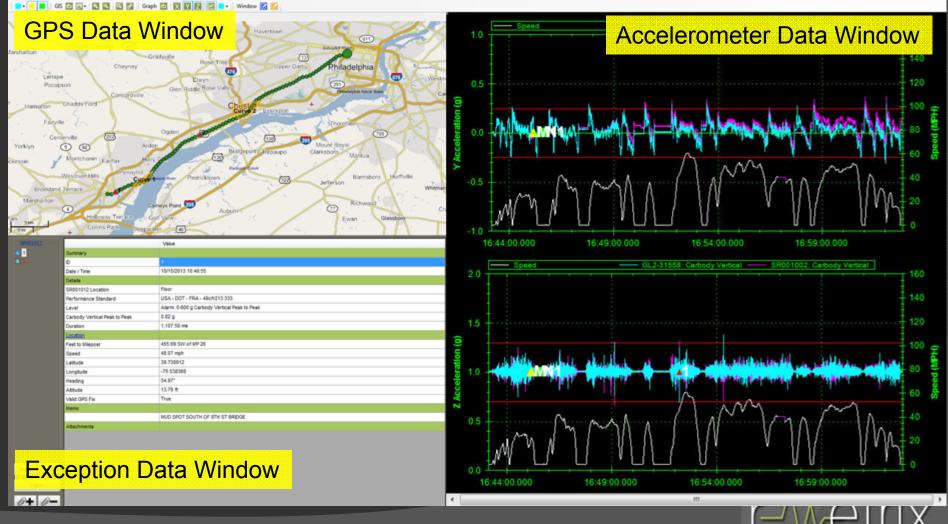
2006: FRA Solicited Proposals for ULTRA-PORTABLE Ride Quality Meters

- Existing Commercial Systems:
 - Not "Portable"
 - Lacked GPS Integration
 - High Maintenance
 - Too Expensive
- Subjective Measurements
 - Rough Ride Locations Manually Noted
 - Rough Ride Conditions Varied Between Inspectors
- Ideal Time to Revisit Ride Quality Meters
 - Components are Increasingly Cost-Effective
 - Components are Increasingly Smaller and Portable

Portable RQM Objectives

- Quantify Ride Quality Exceptions
- Real-Time Display of Data Channels
 - GPS
 - Acceleration
- Powered by Inspector's Laptop
- Ultra-Portable

Low-Cost


Quantify Ride Quality Exceptions

Parameter	Options
Filter	Low Pass (Different Frequency Ranges) Band Pass (Different Frequency Ranges)
Window	Milliseconds
Measurement Type	Peak to Peak Zero to Peak RMS RMS Mean Removed RMS Linear Trend Removed
Exclude Duration	Milliseconds
Level 1 Threshold	g (Alarm Condition)
Level 2 Threshold	g (Alert Condition)

Real-Time Display of Data

ile Edit Inspection Analysis Reports Help

© dFuzion, Inc. 2014

Powered by Laptop

- GPS Receiver (USB/Bluetooth)
- Tri-Axial Accelerometers (USB)
- Ride Quality Software Installed on Inspector's Laptop

Portable

9.37"


5.56"

Field Use

rMetrix History

Autonomous Portable RQM

 Hardware
Ride Quality Software Engine
Real-Time Online Visualization
Reporting

Impact of Low-Cost Portable RQMs

- Variety of Track Inspection Technologies
- Augments These Technologies More Comprehensively and Cost-Effectively
- Increased Situational Awareness of Track and/or Vehicles
 - Safety Standards
 - Proactive Maintenance Activities

Leveraging Portable RQM Technology

- Vehicle Qualification
- Suspension Systems
- Jerk Analysis
- Window Limits
- Speed Profile
- Time and Frequency Based Analyses
- Steady State Acceleration Measurements
- Frequency-weighted acceleration levels can be correlated to:
 - Crew and Passenger Comfort
 - Crew and Passenger Health

Future of Portable RQMs

Economies of Scale

- More Coverage
- Smaller, Cost-Effective Sensors
- Data Storage Capacity
- Track Defect Identification
 - Rail Fractures
 - Chipped Rails
 - Broken Concrete Foundations
- Carbody Acceleration to Detect Long-Wavelength Track Geometry Defects

Contact Us

rMetrix@dFuzion.com www.rMetrix.com

